Главная | Биология | Литература | Химия | История | Экстремальный спорт | Go to the main content page| Download catalogue| Форум

 
Comparative anatomy. Jawless fishes

Go to the main content page

Comparative anatomy. Jawless fishes
The earliest known vertebrates were jawless fishes of the class Agnatha, and their only living representatives are the cyclostomes—the lampreys and the hagfishes. The modern agnathans retain much of the general organization of the ancestral vertebrates, and therefore, much of their musculature is relevant to an understanding of the evolution of muscles in more advanced vertebrates.

The cyclostomes are free-swimming animals with prominent axial somatic musculature, which during contraction produces undulating waves that propagate from head to tail to produce thrust. The axial muscles form a single segmented mass in which each embryonic myotome has given rise to a strip of muscle running vertically down the side of the fish. These muscle segments, known as myomeres, consist of relatively short fibres that insert into septa of connective tissue, the myocommata, between the adjacent myomeres. There is only a rudimentary axial skeleton and no appendicular skeleton, so there are no limb muscles. The eyes of cyclostomes are degenerate structures, and the six axially derived muscles normally found associated with vertebrate eyes are diminished or absent. The branchiomeric muscles incyclostomes are represented by a sheet of constrictors that compresses the gill pouches and helps the pumping mechanism draw water through the pharynx to the gills. Other muscles of the branchiomeric series have been modified for specialized feeding functions.

The branchiomeric musculature of more primitive jawless fishes would probably have been similar for each of the gill arches. The sharks and other cartilaginous fishes (the class Chondrichthyes) have modified the structure of the first two arches, the cartilages of the anterior arch forming the mandible and upper jaw (palatoquadrate), and modifications also having taken place in the second, hyoid arch. The posterior five gill arches of more primitive sharks, however, are a good model for the condition in the ancestral jawless fishes. Each arch has a visceral skeleton comprising five cartilages named, from dorsal to ventral, the pharyngobranchial, epibranchial, ceratobranchial, hypobranchial, and basibranchial. The cartilages are arranged at angles to each other. Each cartilaginous arch is provided with a set of branchial muscles, which receives separate, visceral innervation. Superficially, a thin sheet comprising dorsal and ventral constrictor muscles runs in the flap of skin that covers each gill slit and forms the gill septum. Most fibres attach, dorsally and ventrally, to connective tissue sheathing the body (fascia). Some of the deeper fibres attach to the gill bar and may run between adjacent bars. These thin, broad muscles squeeze the pharynx closed as part of the pumping action necessary for gill breathing. Dorsal and deep to this layer, a levator muscle runs from the sheathing fascia to the pharyngobranchial, and it can elevate the gill arch. In some sharks, however, the most posterior sets of levator muscles, whose fibres run diagonally down and back, may join adjacent levators, become enlarged, and attach to the pectoral girdle. This mass is known as the trapezius and evolves into the tetrapod muscle of the same name. Adductor muscles are positioned so as to close the angle between the epibranchial and ceratobranchial, and an interarcual muscle performs the same function for the angle between the pharyngobranchial and epibranchial cartilages.



 

 


 







***

Свое мнение вы можете высказать в форуме

Дискуссии сайта:

Другие статьи на сайте:


 

Copyright (э) 2003 Малых Дмитрий 2002@narod.ru"> 2002@narod.ru 2002.tk">http://www. 2002.tk


 




  TBN.ru - сеть живущая по правилам 
Hosted by uCoz