Главная | Биология | Литература | Химия | История | Экстремальный спорт | Go to the main content page| Download catalogue| Форум

 
Response of the heart to stress

Go to the main content page

Smooth muscle

Because vertebrate smooth muscle is located in the walls of many hollow organs, the normal functioning of the cardiovascular, respiratory, gastrointestinal, and reproductive systems depends on the constrictive capabilities of smooth muscle cells. Smooth muscle is distinguished from the striated muscles of the skeleton and heart by its structure and its functional capabilities.

As the name implies, smooth muscle presents a uniform appearance that lacks the obvious striping characteristic of striated muscle. Vascular smooth muscle shortens 50 times slower than fast skeletal muscle but generates comparable force using 300 times less chemical energy in the process. These differences in the mechanical properties of smooth versus striatedmuscle relate to differences in the basic mechanism responsible for muscle shortening and force production. As in striated muscle, smooth muscle contraction results from the cyclic interaction of the contractile protein myosin (i.e., the myosin cross bridge) with the contractile protein actin. The arrangement of these contractile proteins and the nature of their cyclic interaction account for the unique contractile capabilities of smooth muscle.

Smooth muscle. Structure and organization.
Smooth muscle contains spindle shaped cells 50 to 250 micrometres in length by five to 10 micrometres in diameter. These cells possess a single, central nucleus. Surrounding the nucleusand throughout most of the cytoplasm are the thick (myosin) and thin (actin) filaments. Tiny projections that originate from the myosin filament are believed to be cross bridges. The ratio of actin to myosin filaments (approximately 12 to 1) is twice that observed in striated muscle and thus may provide a greater opportunity for a cross bridge to attach and generate force in smooth muscle. An increased probability for attachment may, in part, account for the ability of smooth muscle to generate, with far less myosin, comparable or greater force than striated muscle.

Smooth muscle differs from striated muscle in lacking any apparent organization of the actin and myosin contractile filaments into the discrete contractile units called sarcomeres. Recent advances have shown that a sarcomere-like structure may nonetheless exist in smooth muscle. Such a sarcomere-like unit would be composed of the actin filaments that are anchored to dense, amorphous bodies in the cytoplasm as well as dense plaques on the cell membrane. These dense areas are composed of ?-actinin, a protein, found in the Z lines of striated muscle, to which actin filaments are known to be attached. Thus, force generated by myosin cross bridges attached to actin is transmitted through actin filaments to dense bodies and then through neighbouring contractile units, which ultimately terminate on the cell membrane.

Relaxed smooth muscle cells possess a smooth cell membrane appearance, but upon contraction, large membrane blebs (or eruptions) form as a result of inwardly directed contractile forces that are applied at discrete points on the muscle membrane. These points are presumably the dense plaques on the cell membrane to which the actin filaments attach. As an isolated cell shortens it does so in a corkscrewlike manner. It has been hypothesized that, in order for a single cell to shorten in such a unique fashion, the contractile proteins in smooth muscle are helically oriented within the muscle cell. This helical arrangement agrees with earlier speculation that the contractile apparatus in smooth muscle may be arranged at slight angles relative to the long axis of the cell. Such an arrangement of contractile proteins could contribute to the slower shortening velocity and enhanced force-generating ability of smooth muscle.

The contractile proteins interact to generate a force that must be transmitted to the tissue in which the individual smooth muscle cells are embedded. Smooth muscle cells do not have thetendons present in striated muscles, which allow for transfer of muscular force to operate the skeleton. Smooth muscles, however, are generally embedded in a dense connective tissue matrix that connects the smooth muscle cells within the tissue into a larger functional unit.

Other organelles of the cell interior are related to energy production and calcium storage. Mitochondria are located most frequently near the cell nucleus and at the periphery of the cell. As in striated muscles, these mitochondria are linked to ATP production. The sarcoplasmic reticulum is involved in the storage of intracellular calcium. As in striated muscle, this intracellular membrane system plays an important role in determining whether or not contraction occurs by regulating the concentration of intracellular calcium.


***

Свое мнение вы можете высказать в форуме

Дискуссии сайта:

Другие статьи на сайте:


 

Copyright (э) 2003 Малых Дмитрий 2002@narod.ru"> 2002@narod.ru 2002.tk">http://www. 2002.tk


 




  TBN.ru - сеть живущая по правилам 
Hosted by uCoz