Главная | Биология | Литература | Химия | История | Экстремальный спорт | Go to the main content page| Download catalogue| Форум

 
Muscles that work skeletons

Go to the main content page

Muscles that work skeletons

Figure 4 shows a simple system, in which a skeleton is worked by muscles. The two rigid parts of the clam shell (Figure 4A) are hinged together. They canbe closed to protect the animal within or allowed to open. A block of rubbery protein, the inner hinge ligament, lies just inside the hinge. When the adductor muscle contracts it closes the shell, but in so doing it compresses the inner hinge ligament. When it relaxes, the ligament recoils elastically, reopening the shell. This is an unusual system, in that it is worked by just one muscle. Most other skeletal systems need muscles in antagonistic pairs, in which each muscle is paired with a muscle of the opposite effect.


This antagonism is illustrated by the human ankle (Figure 4B). The tibialis anterior muscle flexes the ankle (raising the toes) and the soleus muscle extends the ankle. These muscles make up an antagonistic pair. In this particular case there is another muscle, the gastrocnemius, which cooperates with the soleus, helping it to extend the ankle. (The gastrocnemius, however, crosses the knee as well as the ankle and affects both joints.)


The ankle is not a simple hinge joint. As well as flexion and extension, it can exhibit inversion (the sole of the foot faces the other leg) or eversion (the opposite movement). These movements are controlled by the tibialis posterior, which inverts the ankle, and the peronaeus muscles, which are antagonistic and evert it (Figure 4B).

A hinge such as the clam joint or the human knee performs just one kind of movement, flexion/extension, expressed in technical terms as allowing one degree of freedom of movement. The human ankle performs two kinds of movement, flexion/extension and inversion/eversion, allowing two degrees of freedom. Ball-and-socket joints, such as the human hip, allow three degrees of freedom. Most animal joints have at least two muscles (an antagonistic pair) for each degree of freedom.


Seldom are muscle fibres as long as a muscle, but many muscles, such as the biceps in the human arm, are composed of relatively long fibres lying nearly parallel to each other. These parallel muscles are attached to tendons or apodemes only at their extreme ends. Since muscle fibres can contract about one-third of their resting length, this arrangement is suitable to an extensive and quick movement. The deltoid muscle in the human shoulder is said to be pennate: relatively short fibres attach diagonally onto a tendon that penetrates far into the muscle. The ankle muscles shown in Figure 4 are pennate muscles, but most of the hamstring muscles (at the back of the thigh) are parallel. The adductor muscles of the shells of clams are parallel, but most of the leg muscles of arthropods are pennate. A pennate muscle may contain many more and shorter fibres than a parallel muscle of equal mass. Therefore, the pennate muscle can exert a greater force but cannot shorten a great deal; the parallel-fibred muscle can exert only a relatively small force but can shorten significantly. The presence of pennate muscle in a given structure may have the same effect as a longer lever arm. In the slender legs of arthropods, with insufficient space for bulky muscles or long lever arms, many of the muscles are pennate.

Tendons and apodemes (in arthropods, chitinous rods that serve as sites for muscle attachment) have elastic properties. Tendons in the legs of mammals serve as springs, reducing the energy cost of running: energy that is lost as the foot hits the ground and decelerates the body is stored as elastic strain energy in tendons and is subsequently returned in an elastic recoil. An apodeme in the hind legs of locusts is one of the important elastic elements in the catapult mechanism that powers jumping.




***

Свое мнение вы можете высказать в форуме

Дискуссии сайта:

Другие статьи на сайте:


 

Copyright (э) 2003 Малых Дмитрий 2002@narod.ru"> 2002@narod.ru 2002.tk">http://www. 2002.tk


 




  TBN.ru - сеть живущая по правилам 
Hosted by uCoz